Search results for "Quantum transport"
showing 10 items of 17 documents
Quantum transport of single neutral atoms
2007
The state-selective (quantum) transport of single neutral atoms stored in a one dimensional optical lattice is a promising technique to implement controlled atomic interaction using coherent cold collisions. This is required in several schemes of quantum information processing. Here, we present a technical implementation of the quantum transport scheme for one, two and more caesium atoms, as well as the manipulation and detection of their internal states.
Strong quantum scarring by local impurities
2016
We discover and characterize strong quantum scars, or eigenstates resembling classical periodic orbits, in two-dimensional quantum wells perturbed by local impurities. These scars are not explained by ordinary scar theory, which would require the existence of short, moderately unstable periodic orbits in the perturbed system. Instead, they are supported by classical resonances in the unperturbed system and the resulting quantum near-degeneracy. Even in the case of a large number of randomly scattered impurities, the scars prefer distinct orientations that extremize the overlap with the impurities. We demonstrate that these preferred orientations can be used for highly efficient transport of…
Time-dependent quantum transport in nanosystems : a nonequilibrium Green's function approach
2016
A time-dependent extension to the Landauer–Büttiker approach to study transient quantum transport in arbitrary junctions composed of leads and conducting devices is developed. The nonequilibrium Green’s function approach is employed for describing the charge and heat transport dynamics. The importance of the developed method is that it provides a closed formula for the time-dependent density matrix in both electronic and phononic systems. In the electronic case the nonequilibrium conditions are due to a switch-on of a bias voltage in the leads or a perturbation in the junction whereas in the phononic case the central region of interest is coupled to reservoirs of di erent temperatures. In b…
Haldane Model at finite temperature
2019
We consider the Haldane model, a 2D topological insulator whose phase is defined by the Chern number. We study its phases as temperature varies by means of the Uhlmann number, a finite temperature generalization of the Chern number. Because of the relation between the Uhlmann number and the dynamical transverse conductivity of the system, we evaluate also the conductivity of the model. This analysis does not show any sign of a phase transition induced by the temperature, nonetheless it gives a better understanding of the fate of the topological phase with the increase of the temperature, and it provides another example of the usefulness of the Uhlmann number as a novel tool to study topolog…
Unveiling signatures of topological phases in open kitaev chains and ladders
2019
In this work, the general problem of the characterization of the topological phase of an open quantum system is addressed. In particular, we study the topological properties of Kitaev chains and ladders under the perturbing effect of a current flux injected into the system using an external normal lead and derived from it via a superconducting electrode. After discussing the topological phase diagram of the isolated systems, using a scattering technique within the Bogoliubov de Gennes formulation, we analyze the differential conductance properties of these topological devices as a function of all relevant model parameters. The relevant problem of implementing local spectroscopic measurement…
Phononic heat transport in the transient regime: An analytic solution
2016
We investigate the time-resolved quantum transport properties of phonons in arbitrary harmonic systems connected to phonon baths at different temperatures. We obtain a closed analytic expression of the time-dependent one-particle reduced density matrix by explicitly solving the equations of motion for the nonequilibrium Green's function. This is achieved through a well-controlled approximation of the frequency-dependent bath self-energy. Our result allows for exploring transient oscillations and relaxation times of local heat currents, and correctly reduces to an earlier known result in the steady-state limit. We apply the formalism to atomic chains, and benchmark the validity of the approx…
Many-particle theory for time-dependent quantum transport in nanostructures
2012
During the recent decades, molecular electronics has established its place as one of the promising fields in the nanoscience. The possibility to manufacture and control molecular junctions where single molecules are squeezed between the conducing electrodes has opened up new possibilities to develop nanoscale devices which could be employed as building blocks for future nanoelectronic applications. The driving force for this new branch of physics has been the experimental advances but also theoretical methods have been under intensive study and many theoretical tools have been developed to understand the electron transport processes in the nanoscale systems. This thesis focuses on developin…
Cluster Embedding Method with Non-orthogonal Wave Functions for Simulation of Nanodevices
2012
Applicability of cluster embedding method with non-orthogonal wave functions for theoretical study of processes in nanodevices has been studied. Processes in nanodevices are treated in the framework of time-dependent DFT. We demonstrate that our cluster embedding method is compatible with DFT Kohn-Sham method and quantum transport theory based on time-dependent DFT. We conclude that the approach for electric current calculation developed for orthogonal wave functions may be applied for non-orthogonal wave functions if we transform the initial equations assuming that overlaps are small (S2 ≪ S).
Quantum transport of non-interacting Fermi gas in an optical lattice combined with harmonic trapping
2004
We consider a non-interacting Fermi gas in a combined harmonic and periodic potential. We calculate the energy spectrum and simulate the motion of the gas after sudden replacement of the trap center. For different parameter regimes, the system presents dipole oscillations, damped oscillations around the replaced center, and localization. The behaviour is explained by the change of the energy spectrum from linear to quadratic.
Real-time switching between multiple steady-states in quantum transport
2010
Creative Commons Attribution License 3.0.